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Abstract

We propose a new model that can capture the typical features of multivariate extreme

events observed in financial time series, namely clustering behavior in magnitudes

and arrival times of multivariate extreme events, and time-varying dependence. The

model is developed in the framework of the peaks-over-threshold approach in extreme

value theory and relies on a Poisson process with self-exciting intensity. We discuss

the properties of the model, treat its estimation, deal with testing goodness-of-fit,

and develop a simulation algorithm. The model is applied to return data of two

stock markets and four major European banks.
Keywords: Time Series, Peaks Over Threshold, Hawkes Processes, Extreme Value The-
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1. Introduction

A characteristic property of multivariate financial time series is clustering of

univariate and joint extreme returns. While there exist univariate models, which

combine extreme value theory and inhomogeneous point processes to cope with the

clustering of extremes, models for the multivariate case are still unexplored.
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Figure 1: Exceedances of negated MSCI-USA (Panel 1) and MSCI-EU (Panel 2) daily log-returns
over the respective 0.977th quantiles. Bar plot indicating times of the joint exceedances (Panel 3).

As an empirical illustration consider Figure 1, which illustrates times and magni-

tudes of exceedances over a high quantile of negated daily returns of the MSCI-USA

and MSCI-EU indices. It is apparent that the exceedances are not randomly dis-

tributed, but occur in clusters. Both the times and the magnitudes of exceedances

resemble a certain clustering behavior, namely large values tend to be followed by

large values and vice versa. Additionally, clusters tend to occur simultaneously in

both markets. It is not clear from the figure whether the joint extremes are triggered

by one of the markets, i.e., a leading market, or just happen at the same time being

caused by a common factor.

In this paper we develop a multivariate approach to model joint exceedances

over high thresholds. The model gives insight into the temporal- as well as cross-

dependence structure of multivariate extremes. It provides probabilities of joint

exceedances conditional on the past of the process, captures clustering behavior in

joint exceedances, and accounts for the fact that not only joint but also marginal

exceedances may trigger subsequent joint extremes. Furthermore, the model captures

asymmetric influences of marginal exceedances so that spill-over and contagion effects

in financial market may be analyzed.

The approach is based on a combination of a point process approach to multi-
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variate extremes and Hawkes processes (Hawkes, 1971). It captures the times, as

well as the marks of both joint and marginal exceedances. We model the behavior

of the data explicitly only above a high threshold. Therefore, we do not need to

specify time series models for the non-extreme parts of the data. We further specify

the dependence structure of joint exceedances only in regions where the results from

multivariate extreme value theory (MEVT) are valid. Due to the wide applicability

of the limit results of MEVT the proposed model is relatively robust against misspec-

ifications. Furthermore, the MEVT enables to extrapolate exceedance probabilities

far beyond the initial threshold, which is needed when one is interested in remote

regions of the tail where hardly any data is available.

Modeling multivariate exceedances over high thresholds is a topic of intensive

research in extreme value theory. A bivariate analogue of the point over threshold

model was presented in Smith, Tawn, and Coles (1997) and a multivariate version in

Rootzen and Tajvidi (2006). It was shown that the multivariate Generalized Pareto

Distribution (GPD) is the natural distribution for multivariate extreme exceedances,

because it bares similar properties as the univariate GPD. Extensive references can

be found in de Haan and Ferreira (2006) or Resnick (2007). However, the methods

are not directly applicable when the extremes are clustering in time, because the

assumption of independent realizations is violated.

An approach for modeling clustered multivariate exceedances over high thresh-

olds, which does not rely on the extreme value theory, is a direct application of multi-

variate Hawkes process. This has been done, for instance, in Embrechts, Liniger, and

Lin (2011), Bowsher (2007), Errais, Giesecke, and Goldberg (2010), or Ait-Sahalia,

Cacho-Diaz, and Laeven (2011). In contrast to the models used in these studies ours

has several advantages. First, by relying on arguments from extreme value theory

it accounts for the specific behavior in the tails of the distribution and allows for

extrapolating the exceedance probabilities into the remote tail. This allows for more

flexibility concerning the choice of the threshold. Second, our model specification

is reasonably parsimonious in terms of the number of model parameters, even when

the dimension is large, while maintaining a high degree of flexibility. Finally, we

model the intensities of marginal and joint exceedances, while the approaches in the
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above mentioned papers only model one of them. In particular, information on both

marginal and joint exceedances is allowed to drive the intensity of joint exceedances,

therefore capturing possible (asymmetric) spillover effect.

The rest of the paper is structured as follows. The model is derived in Section

2. In Section 3 we describe estimation of the model, along with the goodness-of-fit

and simulation procedures. Section 4 presents applications of the model to financial

data and Section 5 concludes.

2. Model

In this section we introduce our approach to model the probability of joint extreme

events of random vectors Xt = (X1,t, . . . , Xd,t), t = 1, 2, . . . , n, conditioned on the

history of the past realizations. At this point, we define an extreme event as the

occurrence of a large realization of Xi,t, i = 1, . . . , d that lies above an initial threshold

ui, e.g., the 95th quantile of the marginal distribution. We refer to such extreme

events as “exceedances”. In our model the exceedances are subject to extreme value

theory (EVT), accounting for the specific behavior of the excesses in the tail of the

distribution, and to self-exciting jumps, accounting for the clustering and spillover

effects in times of occurrence of extreme events observed in real data.

Throughout the text we use the following notation. By u = (u1, . . . , ud), the

initial threshold vector, we denote a vector with components relating to sufficiently

high quantiles of the marginal distributions of Xt. Modeling the probability of joint

exceedances over x = (x1, . . . , xd) we focus on x ≥ u (compenentwise). We denote

the history of exceedances of Xi,1, . . . , Xi,t over ui by Hi,t. The history includes both

the times Ti,1, . . . , Ti,Nui , where Nui is the number of exceedances with Xi > ui, and

the magnitudes X̃i,1, . . . , X̃i,Nui
(the marks) of the exceedances. The union of the

sets H1,t, . . . , Hd,t is denoted by Ht. With this notation the conditional probability

of the joint exceedances in which we are interested can be expressed as

P (X1,t+1 ≥ x1, . . . , Xd,t+1 ≥ xd | Ht). (1)

Note that being interested in the probability of joint exceedances, the conditioning
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set in (1) includes joint and marginal exceedances. Using this extended conditioning

set accounts for the fact that both individual and joint extremes influence the arrival

of future multivariate extreme events. Before introducing our multivariate model we

therefore review the univariate approach to modeling exceedances. In Section 2.2 we

then present our model, where we extend the univariate approach to the bivariate

case and in Section 2.3 we present a general multidimensional specification.

2.1. Univariate Model

The basic setup to model univariate exceedances is to assume independent and

identically distributed (iid) data, i.e., time constant exceedance probabilities, and

to use a peaks-over-threshold (POT) model, see, e.g., McNeil, Frey, and Embrechts

(2005). The POT model is based on the asymptotic behavior of the threshold ex-

ceedances for iid data if these are in the maximum domain of attraction of some

extreme value distribution. If the threshold is high enough, then the exceedances

occur in time according to a homogeneous Poisson process and the mark sizes are

independently and identically distributed according to the generalized Pareto distri-

bution (GPD).

In particular, assume that the marginal distribution functions Fi, with i =

1, . . . , d, of the random vector X = (X1, . . . , Xd) are in the maximum domain of

attraction (MDA) of some extreme value distribution Gi with extreme value index

ξi, denoted as Fi ∈ MDA(ξi). This implies that there exist ai,n > 0 and bi,n ∈ R
such that for xi,n = ai,nxi + bi,n it holds that

lim
n→∞

nP (Xi ≥ xi,n) = lim
n→∞

n(1− Fi(xi,n)) = − logGi(xi), (2)

where Gi is the extreme value distribution, so

− logGi(xi) = (1 + ξixi)
−1/ξi , (3)

for all xi with 1 + ξixi > 0. For ξi = 0 the right-hand side of (3) is interpreted as

e−xi .

Equation (2) is the standard Poisson limit result, see, e.g., Leadbetter (1991),
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which suggests a homogeneous Poisson process with rate τi(ui) as an appropriate

model to describe the occurrence of exceedances of the level ui by n independent

realizations of Xi. In this case the rate is approximated as

τi(ui) =
1

n

(
− logGi

(
ui − µi
σi

))
=

1

n

(
1 + ξi

ui − µi
σi

)−1/ξi
, (4)

where µi and σi represent, respectively, bi,n and ai,n for some fixed n. For a higher

threshold xi ≥ ui, the rate of exceedance scales as

τi(xi) = τi(ui)

(
1 + ξi

xi − ui
βi

)−1/ξi
, (5)

where βi = σi + ξi(ui − µi). Note that from (2) and (4) the rate τi(xi) can also be

interpreted as

τi(xi) ≈ P (Xi,t > xi), xi ≥ ui. (6)

This interpretation was also encountered in the context of the self-exciting POT

model with predictable marks in McNeil, Frey, and Embrechts (2005).

In self-exciting POT models this standard setup is extended to allow for tem-

poral dependence in time series such as clustering effects of extreme events. One

distinguishes the cases where the probability of exceedances and their distribution

both change over time (model with predictable marks, see, e.g., McNeil, Frey, and

Embrechts, 2005) and the cases where the distribution of the exceedances is time con-

stant (model with unpredictable marks, see, e.g., Chavez-Demoulin, 2005). The idea

of both is a combination of the standard POT method and self-exciting (Hawkes)

processes, see Hawkes (1971). To be specific, the rate of crossing the initial thresh-

old ui in (5) is modeled conditionally, i.e., τi(ui)→ τi(t, ui), given information of the

exceedances up to time t with the rate of a Hawkes process given by

τi(t, ui) = τi + ψi
∑

j:0<Ti,j<t

ci

(
X̃i,j

)
gi (t− Ti,j) , (7)

where τi > 0 and ψi ≥ 0 are parameters. The variables Ti,1, Ti,2, . . . stand for the
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times and X̃i,1, X̃i,2, . . . for the marks of the past exceedances. The path of τi(t, ui)

depends both on the timing of past events and on their marks. After an exceedance

at time Ti,j with mark Xi,j the intensity jumps by ψic(X̃i,j) and, through function

gi(·), tends toward the constant level τi in the absence of an event. Later in the

paper we use a normalization of the argument of the ci(·) function by hi, e.g., the

95th quantile of the marginal distribution to make the parameters of ci(·) comparable

over models and dimensions. Throughout the text we then use the notation

v∗i (t) =
∑

j:0<Ti,j<t

ci

(
X̃i,j

hi

)
gi (t− Ti,j) . (8)

Thus the decay function gi(·) determines the rate how an influence of events decays

in time, and the impact function ci(·) determines the contribution of events to the

conditional rate. The commonly used specification for gi(·) is an exponential function

gi(s) = e−γis, γi > 0. (9)

For the impact function we suggest to use

ci(xi) = (xi)
δi , δi ≥ 0. (10)

Combining (5) and (7) and adding the self-exciting component v∗i (t) also to the

scale parameter β of the GPD, we obtain

τi(t, xi) = τi(t, ui)

(
1 + ξi

xi − ui
βi + αiv∗i (t)

)−1/ξi
, xi ≥ ui, (11)

the conditional rate of exceeding a high level xi, given information of exceedances over

ui up to time t. Here the excesses over the threshold ui are conditionally independent

and distributed according to the GPD with shape parameter ξi and scale parameter

βi +αiv
∗(t). Since the history affects the distribution of the marks, this is the model

with predictable marks. Setting αi = 0 we get the model with unpredictable marks.

The exceedances then occur in time according to a non-homogeneous Poisson process
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whereas the excesses over the threshold ui are independent and identically distributed

according to the GPD, see Chavez-Demoulin (2005).

Technically, τi(t, xi) is the conditional rate of a point process Ni(t, xi) that counts

number of exceedances of the level xi by Xi,1, Xi,2, . . . , Xi,t. Note that Ni(t, xi)

is a continuous process, but we observe Xi,t only at discrete times. Taking this

discreteness into account, we can approximate the conditional probability that Xi,t+1

crosses the level xi ≥ ui given the history of past exceedances Hi,t as the probability

of at least one exceedance in period (t, t+ 1]. Formally,

P (Xi,t+1 ≥ xi | Hi,t) ≈ 1− P (Ni(t+ 1, xi)−Ni(t, xi) = 0 | Hi,t)

= 1− exp

(
−
∫ t+1

t

τi(s, xi)ds

)
. (12)

2.2. Bivariate Model

As a first generalization, we extend the univariate self exciting POT models to

the bivariate case. We propose to model the arrival of joint exceedances with the

conditional rate τ(t, x1, x2), which, similarly to (12), can be used for estimating the

probability of joint exceedances as

P (X1,t+1 ≥ x1, X2,t+1 ≥ x2, | Ht) ≈ 1− exp

(
−
∫ t+1

t

τ(s, x1, x2)ds

)
. (13)

For the construction of τ(t, x1, x2) we consider the rate of joint exceedances τ(x1, x2)

for independent realizations and then incorporate the self-exciting component.

For iid random vectors Xt = (X1,t, X2,t), t = 1, ..., n we assume that its distri-

bution function F is in the domain of attraction of a multivariate extreme value

distribution function G. Then there exist sequences ai,n > 0 and bi,n ∈ R such that

for xi,n = ai,nxi + bi,n it holds

lim
n→∞

nP (X1,t > a1,nx1 + b1,n or X2,t > a2,nx1 + b2,n) = − logG(x1, x2). (14)

Since G is a multivariate extreme value distribution function, its marginal distribu-

tions Gi are univariate extreme value. We denote the shape parameter of Gi by ξi.
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The point process

Nn(B) =
∞∑

t=1

I{(i/n,(1+ξ1(X1,t−b1,n)/a1,n)1/ξ1 ,(1+ξ2(X2,t−b2,n)/a2,n)1/ξ2)∈B} (15)

converges in distribution to a Poisson point process with rate λ× ν, where λ is the

Lebesgue measure and ν the exponent measure 1. For details see Theorem 6.1.11 in

de Haan and Ferreira (2006). Considering the point process Nn(B) it is convenient to

transforms the margins of Xt to a unit Frechet distribution using y = exp(−1/x), x >

0. Yt = (Y1,t, Y2,t) denotes a vector that has unit Frechet marginals and preserves

the dependence structure of Xt = (X1,t, X2,t), t = 1, ..., n. Due to the max-stability

property of unit Frechet variables we can consider the process of points (Y1,t/n, Y2,t/n)

in representation (15).

For Yt we have

lim
n→∞

nP (Y1,t > ny1, Y2,t > ny2) = 1/y1 + 1/y2 − Vθ(y1, y2), (16)

where Vθ(y1, y2) is the exponent measure of the set R2
+ \ [(0, y1)× (0, y2)] and it

holds that Vθ(y1, y2) = − logG(
y
ξ1
1 −1
ξ1

,
y
ξ2
2 −1
ξ2

), while θ denotes dependence parameter

of V. The right-hand side of (16) determines the average number of joint exceedances

over (ny1, ny2) by n iid realizations of Yt as n→∞. Assuming that this asymptotic

argument holds for a finite sample size and exploiting the homogeneity property of the

exponent measure, i.e., Vθ(ay1, ay2) = a−1Vθ(y1, y2) with a > 0, the rate of occurrence

of joint exceedances over some high threshold (y1, y2) by a single realization of Yt

can be approximated as 1/y1 + 1/y2 − Vθ(y1, y2). In terms of the initial vector Xt

1There is an inherent relation between the exponent measure ν and an extreme value distribution
G, namely, G(x1, x2) = exp(−ν(R2

+ \ [(0, x1)× (0, x2)])). The name of ν is due to this relation.
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and the high threshold (x1, x2) this can be expressed as

τ(x1, x2) = − log(1− τ1(x1))− log(1− τ2(x2))−

Vθ

(
1

− log(1− τ1(x1))
,

1

− log(1− τ2(x2))

)
, (17)

where we used the fact that over some high threshold ui the tail of Xi,t can ap-

proximated by the GPD, namely, P (Xi,t > xi) = τi(xi), see (6), and hence Yi,t ∼
−1/ log(1− τi(Xi,t)).

The rate (17) is derived for iid realizations of (X1, X2) and we add self-exciting

components in order to capture possible temporal dependence between joint ex-

ceedances. We add it both to the processes of marginal exceedances and to the

function Vθ obtaining the conditional rate of joint exceedances

τ(t, x1, x2) = − log(1− τ1(t, x1))− log(1− τ2(t, x2))−

Vθ(t)

(
1

− log(1− τ1(t, x1))
,

1

− log(1− τ2(t, x2))

)
, (18)

where Vθ(t) denotes the exponent measure Vθ, but with a time-varying parameter. A

time-varying structure of Vθ(t) accounts for temporal changes in the extremal depen-

dence structure as, for example, during financial turmoil.

The processes of marginal exceedances are chosen as in the self-exciting POT

model with predictable marks replacing τi(xi) in (17) with τi(t, xi) as in (11). This

provides the mechanism how not only the joint exceedances, but also the marginal

ones can contribute to occurrence of joint extremes. It accounts for the observa-

tion that shocks do not always occur simultaneously and it takes some time for the

transmission to take place.

The parametric specification of Vθ(t) is still open and there are many parametric

families of dependence structure in MEVT. With respect to applications, the de-

pendence structure should both be as flexible as possible and be able to capture an

asymmetric dependence structure, in the sense that Vθ(y1, y2) 6= Vθ(y2, y1). This al-

lows for asymmetric responses of the probability of joint exceedances to exceedances
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of the individual variables implying interesting economic interpretations. For exam-

ple, the stock market of a small country may react strongly to shocks to the US

stock market, but not vice versa. We suggest to use the dependence function of the

Gumbel copula2. It has a simple structure with only one parameter θ ≥ 1, which

makes it easy to add the time-dependent part and to extend it to an asymmetric

form. It also can be extended to dimensions beyond two, which is advantageous for

the multivariate extension in Section 2.3. Furthermore, its dependence function in

the tail is almost identical to the one of the t-copula for any choice of the parameters

of the t-copula and is thus very flexible, see Demarta and McNeil (2005) for details.

With Vθ(y1, y2) of the asymmetric Gumbel copula

Vθ(y1, y2) =
(1− w1)

y1
+

(1− w2)

y2
+

((
w1

y1

)θ
+

(
w2

y2

)θ)1/θ

,

the conditional rate of joint exceedance in (18) is given by

τ(t, x1, x2) = w1(− log(1− τ1(t, x1))) + w2(− log(1− τ2(t, x2)))−
(

(−w1 log(1− τ1(t, x1)))θ(t) + (−w2 log(1− τ2(t, x2)))θ(t)
)1/θ(t)

. (19)

The parameters w1 and w2 account for asymmetry in the dependence structure.

When w1 = w2 = 1 we obtain the symmetric Gumbel model. The time-varying

dependence parameter θ(t) is parameterized as

θ(t) = θm + ψmv
∗
m(t). (20)

The self-exciting component v∗m(t) accounts for changes in the degree of the extreme

dependence. Note that all components of the right-hand side of the above equation

have a subscript m indicating that the parameters relate to the model of joint-

exceedances, in contrast to the model of marginal exceedances. The structure of

2We initially also considered the Galambos copula, but its fit was inferior for all applications we
considered.
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v∗m(t) is the same as of v∗i (t) in the univariate self-exciting POT model in (8), that is

v∗m(t) =
∑

j:0<Tj<t

cm

(
X̃1,j

h1
,
X̃2,j

h2

)
gm(t− Tj), (21)

where Tj stands for the time of joint exceedance. The function cm

(
X̃1,j

h1
,
X̃2,j

h2

)
is

increasing in both arguments and determines the contribution of a joint exceedance

with a mark (X̃1,j, X̃2,j) to the dependence parameter θ(t), whereas gm(·) defines

the rate how this contribution decays in time after the occurrence. As before, h1

and h2 are normalizing constants, for instance the 95th quantiles of the marginal

distribution functions.

Again, gm(·) and cm(·) have to be specified. For the decay function gm(·) we use

the same form as for gi in (9), namely

gm(s) = e−γms γm > 0. (22)

The choice of the impact function cm(·) is ambiguous and may depend on the specific

problem considered. We suggest the following specifications:

cm(x1, x2) = κ1x1 + κ2x2, (23)

cm(x1, x2) = (κ1x1 + κ2x2)
δm , δm ≥ 0, (24)

cm(x1, x2) = max (x1, x2)
δm , δm ≥ 0, (25)

where κ1 ≥ 0 and κ2 ≥ 0 are weighting coefficients. The higher κi, the stronger

the influence of a mark of the i-th margin on the dependence between the extreme

events. This may lead to asymmetric responses to individual exceedances and the

effect may possibly overlap with the effect captured by using an asymmetric copula.

It is an empirical issue whether this full flexibility is necessary.

2.3. Multivariate Extension

In analogy with the bivariate case, we assume that the distribution function F

of the vector X = (X1, . . . , Xd) is in the domain of attraction of the multivariate
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extreme value distribution G. Hence, there exist ai,n > 0 and bi,n ∈ R, for i =

1, . . . , d, such that for xi,n = ai,nxi + bi,n it holds that

lim
n→∞

n(1− F (x1,n, . . . , xd,n)) = − logG(x1, x2, . . . , xd), (26)

see de Haan and Ferreira (2006). Transforming the margins of X to a unit Frechet

distribution and denoting this vector by Y = (Y1, . . . , Yd), the joint tail of Y can be

expressed as

lim
n→∞

nP (Y ≥ yn) =
∑

i∈D∗

(−1)1+
∑d
k=1 ikVθ

(
yi11 ∞1−i1 , . . . , yidd ∞1−id) , (27)

where i = (i1, . . . , id), D∗ = [0, 1]d \ {0, . . . , 0}, y = (y1, . . . , yd), Vθ(y1, . . . , y2)

is the exponent measure of the set Rd
+ \ [(0, y1)× . . .× (0, yd)], and it holds that

Vθ(y1, . . . , yd) = − logG(
y
ξ1
1 −1
ξ1

, . . . ,
y
ξd
d −1
ξd

). Note that ∞1−ik symbolically stands for

1, if ik = 1, and for ∞, if ik = 0. Defining the rate of joint exceedances in the

same way as in Section 2.2 and adding the self-exciting component to the process of

marginal exceedances and to the parameter of the exponent measure, the conditional

rate of joint exceedances of the initial vector Xt over a high threshold x = (x1, ..., x2)

can be expressed as

τ(t,x) =
∑

i∈D∗

(−1)1+
∑d
k=1 ikVθ(t)

( ∞1−i1

(− log(1− τ1(t, x1)))i1
, . . . ,

∞1−id

(− log(1− τd(t, xd)))i1
)
,

(28)

where τi(t, xi) is as in (11) and Vθ(t) denotes the dependence function Vθ with a time-

varying parameter. Joint exceedances of Xt over the level x by one realization of

X can be modeled with a Poisson process with rate τ(t,x). In the same way as in

the bivariate case, we interpret τ(t,x) as the conditional rate of joint exceedances

by the vector Xt over the threshold x, given the information of marginal and joint

exceedances over the initial threshold u = (u1, . . . , ud) up to time t.
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For the non-exchangeable Gumbel copula, see Tawn (1990), Vθ is given by

Vθ(y1, . . . , yd) =
∑

s∈S





(∑

i∈s
wi,s/yi

)θs




1/θs

, (29)

where S is the set of all non-empty subsets of {1, . . . , d} and the parameters are

constrained by θs ≥ 1 for all s ∈ S, wi,s = 0 if i /∈ s, wi,s ≥ 0, i = 1, . . . , d and∑
s∈S wi,s = 1, see also Coles and Tawn (1991). Vθ in (29) is overparameterized for

most applications, as it contains 2d−1(d+2)−(2d+1) parameters. We suggest to use

a shortened form of Vθ which is both concise and possesses an asymmetric structure:

Vθ(y1, . . . , yd) =
d∑

i=1

(
1− wi
yi

)
+

{
d∑

i=1

(
wi
yi

)θ}1/θ

, (30)

where 0 < wk ≤ 1, for k = 1, . . . , d, are the asymmetry parameters. If wk = 1 for

all k = 1, . . . , d we obtain the exponent measure of the exchangeable version of the

Gumbel copula. With Vθ as above the conditional rate τ(t,x) takes the form

τ(t,x) =
∑

i∈D∗

(−1)1+
∑d
k=1 ik



(

d∑

k=1

(−wkik log(1− τk(t, xk)))θ(t)
)1/θ(t)

+
d∑

k=1

(1− wk)ik(− log(1− τk(t, xk)))
]
. (31)

The time variation of the dependence parameter θ(t) is modeled the same way as for

the bivariate model, see (20). The structure of v∗m(t) is given by

v∗m(t) =
∑

j:0<Tj<t

cm

(
X̃1,j

h1
, . . . ,

X̃d,j

hd

)
gm(t− Tj), (32)

where Tj stands for the time of joint exceedance,
(
X̃1,j, . . . , X̃d,j

)
is the vector of

marks of the joint extreme event, hi a normalizing constant, gm(s) = exp (−γms),
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γm > 0 the decay function, and cm(·) the impact function. Analogously to the bivari-

ate case we suggest the choices c(x1, . . . , xd) = κ1x1 + . . . + κdxd, cm(x1, . . . , xd) =

(κ1x1 + . . .+ κdxd)
δm , or cm(x1, . . . , xd) = max (x1, . . . , xd)

δm , with δm ≥ 0, κi ≥ 0,

i = 1, . . . , d.

3. Estimation, Goodness-of-Fit and Simulation

In this section derive the likelihood function for the estimation of our model

(Section 3.1) and we discuss the goodness-of-fit (Section 3.2). Finally, in Section 3.3

we introduce a simulation algorithm.

3.1. Model Estimation

Statistical fitting of the model presented in Section 2 consists of estimating the

marginal conditional rates τi(t, xi), for i = 1, . . . , d, and the conditional rate of joint

exceedances τ(t, x1, . . . , xd). In principle, one could estimate the model sequentially,

but in order to gain statistical efficiency we maximize the log-likelihood functions of

marginal and joint exceedances in one step, so we maximize the function

logL = logL∗d +
d∑

k=1

logLi, (33)

where Li and L∗d denote the likelihood functions of the marginal and joint rates of

exceedances, respectively.

For convenience, we adopt the following notation: Xt = (X1,t, . . . , Xd,t), t =

1, 2, . . . , n are the observations on which we estimate our model, u = (u1, . . . , ud) is

the initial threshold, i.e., ui is a sufficiently high quantile of Xi,t; Ti,k and X̃i,k, with

k = 1, . . . , Nui , stand for the times and marks of the marginal exceedances over ui

and Nu is a set containing indexes of Xt such that if t ∈ Nu then Xt exceeds u in at

least one component.

The likelihood function for the marginal rate of exceedance, see McNeil, Frey,
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and Embrechts (2005), is

Li (τi, ψi, δi, γi, ξi, βi, αi) = exp

(
−nτi − ψi

∫ n

0

v∗i (s)ds

) Nui∏

j=1

λi

(
Ti,j, X̃i,j

)
, (34)

where

λi(t, xi) =
τi + ψiv

∗
i (t)

βi + αiv∗i (t)

(
1 + ξi

xi − ui
βi + αiv∗i (t)

)−1/ξi−1

is the conditional intensity of the self-exciting POT model with predictable marks.

The intensity λi(t, xi) is derived from

∫ ∞

xi

λi(t, s)ds = τi(t, xi).

With function v∗i as in (8), the integral in (34) takes the form

∫ n

0

v∗i (s)ds =

∫ n

0

∑

j:0<Ti,j<s

e−γi(s−Ti,j)ci

(
X̃i,j

hi

)
ds =

1

γi

Nui∑

k=1

[
(
e−γiTi,k − e−γiTi,k+1

) k∑

j=1

eγiTi,jci

(
X̃i,j

hi

)]
,

with Ti,Nui+1 = n.

Our approach to estimating the model of joint exceedances follows Coles and

Tawn (1991). For iid random vectors Yt = (Y1,t, . . . , Yd,t) that are in the domain

of attraction of a multivariate extreme value distribution and have unit Frechet

marginals, the likelihood for estimating the exponent measure Vθ of the set A =

Rd
+ \ {(0, v1)× . . .× (0, vd)}, where v1, . . . , vd are high thresholds of Yt/n, is as

LA (θ; {Yt/n : t ∈ NA}) = exp(−Vθ(v1, . . . , vd))
∏

t∈NA
µ(dr × dφ), (35)

where θ denotes the parameter to be estimated, NA contains indexes of the points

Yt/n that are in A, and µ(dr× dφ) denotes the intensity of occurrence of the points

16



Yt/n. The intensity is presented in pseudoradial, rt, and angular, φt = (φ1,t, . . . , φd,t),

coordinates

rt =
d∑

i=1

Yi,t/n, φi,t =Yi,t/(nrt), t =1, . . . , n, i =1, . . . , d, (36)

for which it holds that µ(dr × dφ) = dr
r2
h(φ)dφ, where h(φ) denotes a density of

the spectral measure. Details about the spectral measure and its relationship to the

exponent measure see, for example, Resnick (2007), de Haan and Ferreira (2006), or

Coles and Tawn (1991).

To extend the above approach for estimation of our model we proceed by trans-

forming the margins of Xt to a unit Frechet distribution (accounting for the time-

varying features of exceedances of Xt over u). The transformed vector is denoted by

Zt = (Z1,t, . . . , Zd,t), where

Zi,t =




−1/ log (1− τi(t,Xi,t)) if Xi,t ≥ ui,

−1/ log(R(Xi,t)/(n+ 1)) if Xi,t < ui.
(37)

In the above equation τi(t, x) denotes the distribution of the upper tail of the ith

margin at time t, see (11), and R(Xi,t) denotes the rank of Xi,t. According to (37),

the transformed threshold u is a time-varying vector zt = (z1,t, . . . , zd,t), with zi,t =

−1/ log (1− τi(t, ui)). Incorporating (37) into (35) yields the likelihood function L∗d,

which can be used for parameter estimation of both the marginal models and the

exponent measure. L∗d is as follows

L∗d(θm, φm, γm) = exp

(
−
∫ n

0

Vθ(t)(z1,t, . . . , zd,t)dt

) ∏

j∈Nu

(
h(φj)

(nri)d+1
×

∏

i=1,...,d:
Zi,j>zi,j

[
Z2
i,jτi(j, ui)

−ξi

βi + αiv∗i (j)
exp(1/Zi,j) {1− exp(−1/Zi,j)}1+ξi

])
, (38)

where rt and φt are pseudoradial and angular coordinates of Zt given in (36). The
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form of Vθ(t) is given in (29) and (30). The density of the spectral measure of the

asymmetric Gumbel model suggested in (30), provided φt > 0, is

h(φt) =

{
d−1∏

k=1

(kθ(t)− 1)

}(
d∏

i=1

wi

)θ(t)( d∏

i=1

φi,t

)−(1+θ(t)){ d∑

i=1

(
wi
φi,t

)θ(t)}1/θ(t)−d

.

(39)

Details for the likelihood function and the density of the spectral measure can be

found in Coles and Tawn (1991). Note that the integral in (38) cannot be solved

explicitly. In practice, this integral is approximated by a sum over all observations.

3.2. Goodness-of-fit

Applying the models of marginal and joint exceedances in practice, where true

probabilities are unknown, it is vital to perform a goodness-of-fit procedure to check

the performance of the model. One possible approach is to consider the standardized

inter-exceedances times.

In the framework of Section 2.1, assume that a marginal exceedance over some

level xi occurs at time Ti,j. A time interval between this exceedance and the next one

is random. Denote this random time interval by D. According to (12), conditioning

on the information set Hi,Ti,j , the probability that in the next d periods at least one

exceedance occurs is

P (D ≤ d | Hi,Ti,j) = 1− exp

(
−
∫ Ti,j+d

Ti,j

τi(s, xi)ds

)
.

Recalling that for a continuous random variable X with distribution function F ,

F (X) is uniformly distributed on the unit interval, we obtain

∫ Ti,j+L

Ti,j

τi(s, xi)ds = − logU, (40)

where U ∼ U [0, 1]. It follows from (40), that for times Ti,j, Ti,j+1 of consecutive

marginal exceedances the value
∫ Ti,j+1

Ti,j
τi(s, xi)ds is a realization of an exponential

random variable with mean 1.
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With the analogous consideration as for the marginal exceedances we obtain a

similar result for the joint exceedances. For times Ti,j, Ti,j+1 of consecutive joint

exceedances the value
∫ Ti,j+1

Ti,j
τ(s, x1, ..., xd)ds is a realization from a standard expo-

nential distribution.

Assuming that we have observed n points of marginal or joint exceedances at

times Tj, j = 1, 2, . . . , N , we construct the goodness-of-fit procedure as follows.

Define the sequence of the standardized inter-exceedance times (χ1, . . . , χN−1) by:

χj =

∫ Tj+1

Tj

τ(s)ds, j = 1, 2, . . . , N − 1

where τ(s) denotes the conditional rate of marginal or joint exceedances. It is appar-

ent that the χj theoretically follow a standard exponential distribution. In practice,

this will be only an approximate result, because the true values of the parameters

are unknown. The goodness-of-fit can be checked either graphically using QQplots,

or using a formal goodness-of-fit test such as the Kolmogorov-Smirnov or Anderson-

Darling tests to test whether the estimates of χj follow a standard exponential dis-

tribution. As part of a goodness-of-fit procedure one can also analyze the ability of

random data simulated from the model to reproduce certain characteristics of the

data. The simulation procedure is described in the next section.

3.3. Simulation

Simulating a sample with n observations from the bivariate model of joint ex-

ceedances, for t ∈ {1, 2, . . . , n} we model the occurrence of exceedances over the

initial threshold as a discrete random variable with the following possible outcomes:

i) exceedance by only the 1st margin, with probability

P (X1,t ≥ u1, X2,t < u2 | Ht−1) = exp

(
−
∫ t

t−1
τ(s, u1, u2)ds

)
−exp

(
−
∫ t

t−1
τ1(s, u1)ds

)
,

ii) exceedance by only the 2nd margin, with probability

P (X1,t < u1, X2,t ≥ u2 | Ht−1) = exp

(
−
∫ t

t−1
τ(s, u1, u2)ds

)
−exp

(
−
∫ t

t−1
τ2(s, u2)ds

)
,
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iii) exceedance by both the 1st and 2nd margins, with probability

P (X1,t ≥ u1, X2,t ≥ u2 | Ht−1) = 1− exp

(
−
∫ t

t−1
τ(s, u1, u2)ds

)
,

iv) no exceedance at all, with probability

P (X1,t < u1, X2,t < u2 | Ht−1) = exp

(
−
∫ t

t−1
τ1(s, u1)ds

)
+exp

(
−
∫ t

t−1
τ2(s, u2)ds

)
−

exp

(
−
∫ t

t−1
τ(s, u1, u2)ds

)
.

The marks of exceedances follow a GPD with shape parameter ξi and a time varying

scale parameter βi + αivi(t), i.e., the marks x̃i,t can be generated from X̃i,t, where

X̃i,t = ui +
βi + αiv

∗
i (t)

ξi
(U−ξi − 1), U ∼ U [0, 1]. (41)

By updating the rates of marginal and joint exceedances, as described in Section 2.2,

and repeating the above simulation procedure for each t ∈ {1, 2, . . . , n} we obtain a

path of simulated exceedances. Simulating the data it may happen that for some t,

τi(t, ui) ≥ 1, which is in contradiction with (6) and may lead to explosive behavior

of the simulated path. To avoid this, τi(t, ui) is to be bounded from above by 1, i.e.

τi(t, ui) = min(τi+ψiv
∗
i (t), 1). In Section 4.3.1 we illustrate the use of the simulation

algorithm.

4. Application to Financial Data

In this section we apply the model of joint exceedances to financial data. We

consider a two- and a four-dimensional application of the model, and focus on de-

scribing the behavior of extreme (negative) returns in financial markets worldwide

and in the European banking sector.
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4.1. Data and Preliminary Analysis

In order to illustrate the two dimensional model we consider extreme negative

returns in European and the US financial markets. The data consists of daily log-

returns of the two Morgan Stanley Capital International (MSCI) indexes for US

(MSCI-USA) and Europe (MSCI-EU) for the period January 1, 1990 to January 13,

2012, resulting in 5749 observations. The MSCI-USA index is designed to measure

large and mid cap equity performance of the US equity market, whereas the MSCI

Europe Index measures the equity performance of the developed markets in Europe

and consists of the following country indices: Austria, Belgium, Denmark, Finland,

France, Germany, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain,

Sweden, Switzerland, and the United Kingdom3.

The four-dimensional model is applied to joint extreme negative returns on equity

of four major European banks, namely Royal Bank of Scotland (RBS), United Bank

of Switzerland (UBS), Deutsche Bank (DB), and HSBC Holdings (HSBC), embracing

the period October 20, 1993 to January 13, 2012. The sample consists of 4768

observations. The summary statistics for all series can be found in Table 1. All six

returns series show high excess kurtosis suggesting Frechet type tails for the returns

distribution. Note that the extremely high skewness and kurtosis for RBS is the effect

of two extremely large negative returns. We decided not to delete these observations

since the methods we apply have a certain robustness to outliers and we are in fact

interested in very extreme events. Furthermore, since the estimate of the tail index

of left tail of RBS return time series (see Table 5) is larger than 0.25 suggesting that

kurtosis does not exist for this time series. Note that for estimation of our model we

use negated daily log-returns on the equity, allowing us to look at the upper rather

than the lower tail.

4.2. Extreme Value Condition

Recall that the multivariate extreme value condition is an underlying assumption

of the model of joint exceedances presented in this paper. This assumption includes

3see www.msci.com for details
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Table 1: Summary statistics

MSCI-USA MSCI-EU DB HSBC RBS UBS

Mean(%) 0.0232 0.0155 -0.0025 0.0192 -0.0246 -0.0100
St.Deviation 0.0116 0.0126 0.0234 0.0190 0.0330 0.0231

Skewness -0.2468 -0.1844 0.1968 -0.2152 -8.2565 0.1289
Excess Kurtosis 8.7890 8.0630 8.9337 8.6815 272.8115 12.5427

both the marginal extreme value condition and the existence of extreme dependence.

Thus, to be able to apply our model to real data it is crucial to test this assumption

first.

We rely on the mean-excess function to verify if a GPD is an appropriate model

for the excesses and to choose the initial threshold. Details on this and other methods

may be found, e.g., in McNeil, Frey, and Embrechts (2005), Embrechts, Klueppel-

berg, and Mikosch (1997) or Resnick and Starica (1995), discussions about choosing

a threshold in Chavez-Demoulin and Embrechts (2011). For positive-valued data

X1, X2, . . . , Xn we estimate the mean-excess function as

en(v) =

∑n
i=1(Xi − v)I{Xi>v}∑n

i=1 I{Xi>v}
. (42)

Plotting {Xi,n, en(Xi,n)}, where Xi,n denotes the ith order statistic, we consider a

shape of the mean-excess function. If the shape looks approximately linear then this

suggests that a GPD is an appropriate model for the excesses. The point where

the mean-excess function visually becomes close to linear can be set as a threshold

for GPD estimation. Figures 2 plots the estimates of mean-excess function for the

first 6% of the sample upper order statistics. For all series, the GPD seems ap-

propriate. We set the marginal initial threshold at points where the mean-excess

function visually becomes (close to) linear (denoted by a solid vertical line in Fig-

ure 2). For MSCI-USA series the initial threshold is 2.4922% (97.7% quantile), for

MSCI-EU is 2.86% (97.7% quantile), which results in 132 marginal exceedances for

the two indexes, and in 53 joint exceedances. For DB the series the initial threshold

is 4.2462% (96.22% quantile), for HSBC is 3.281% (96.22% quantile), for RBS is
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Figure 2: Sample mean excess plots of negated daily log-returns of the MSCI-USA, MSCI-EU, DB,
HSBC, RBS, and UBS.

4.7179% (96.22% quantile), and for UBS is 4.0338% (96.22% quantile), with such

thresholds there are 180 marginal (for all four indexes) and 32 joint exceedances.

Furthermore, since the multivariate extreme value condition is an underlying

assumption of the model of joint exceedances, it is crucial to know whether there is

asymptotic dependence in the data used for the model estimation. For this purpose,

we employ a graphical test called a Q-curve, see de Haan and Ferreira (2006). Flat

Q-curves indicate asymptotic independence. Figure 3 illustrates the Q-curve of the

negative log returns of MSCI-USA and MSCI-EU, estimated on different number (k)

of upper order statistics of the return series. The line labeled “ind” indicates the

Q-curve in the independence case. The curves on Figure 3 differ significantly from a

straight line indicating that there is no asymptotic independence between negative

log returns of MSCI-USA and MSCI-EU indexes.

To visualize theQ-curve in the four-dimensional case, we report its three-dimensional

projections. Analogously to the bivariate case, a flat convex shape of the Q-curve

in the three dimensional case indicates the presence of asymptotic independence. If
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Figure 3: Estimated Q-curves on negated log-returns of MSCI-USA and MSCI-EU: k =
100, 150, 200.

the shape is concave, one expects no asymptotic independence. Figure 4 illustrates

the three dimensional Q-curves of DB, HSBC, RBS, UBS return series, estimated on

200 upper order statistics of the return series. The curves on Figure 4 seem to differ

significantly from a flat curve indicating that there is no asymptotic independence

between negative log returns of DB, HSBC, RBS, UBS equity prices.

4.3. Applying the Model

We now present the estimation results for the two- and four-dimensional models

of joint exceedances. In preliminary estimations we considered the three different

specifications for the impact function c(·) we proposed Section 2.3 and found that

none of the impact functions is distinguishable from a constant one, i.e., setting

c ≡ 1. This implies that magnitudes of exceedances are irrelevant for modeling of

the dependence parameter in our data sets. Hence, in the following we consider

the models of joint exceedances with a constant impact function. The normalizing

constants hi introduced in equations (7), (21) and (32) are set equal to the 95%

quantiles of the marginal distribution functions.
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Figure 4: Estimated Q-curves on negated log-returns of DB, HSBC, RBS, and UBS.
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4.3.1. Two-dimensional Model

In this section, we focus on joint extreme negative returns in Europe and USA. We

use negated daily log-returns of MSCI-USA and MSCI-Europe indexes for estimation.

Estimating the two-dimensional model of joint exceedances with the asymmetric

Gumbel copula we conduct two likelihood tests on the following hypothesis: H0 :

ψm = 0, i.e., the dependence parameter θ(t) is constant, and H0 : w1 = w2 = 1 that

the dependence structure is symmetric. It turns out that there is significant evidence

against the null hypotheses H0 : ψm = 0 with a p-value of 0.00001, and that there

is no significant evidence against the null hypothesis H0 : w1 = w2 = 1 (p-values

0.9999). The parameter estimates along with 95% confidence intervals are reported in

Tables 2-3. The confidence intervals are computed by using the profile log-likelihood

Table 2: Parameter estimates of the self-exciting POT model with predictable marks: two-
dimensional model.

MSCI-USA MSCI-EU
Parameter Estimate Conf. interval Estimate Conf. interval

τi 0.0089 [0.0066 0.0115] 0.0079 [0.0059 0.0101]
ψi 0.0181 [0.0112 0.0283] 0.0215 [0.0136 0.0332]
γi 0.0434 [0.0327 0.0577] 0.0587 [0.0459 0.0746]
δi 0.7979 [0.3329 1.2420] 0.9351 [0.4929 1.3515]
ξi 0.1988 [0.0595 0.3692] 0.2016 [0.0770 0.3586]
βi 0.5360 [0.4027 0.6972] 0.5272 [0.3933 0.6935]
αi 0.1120 [0.0597 0.2011] 0.1214 [0.0654 0.2125]

Table 3: Parameter estimates of the model of joint exceedances: two-dimensional model.

Parameter Estimate Conf. interval

θm 1.3793 [1.3029 1.4655]
ψm 0.1094 [0.0552 0.2080]
γm 0.0087 [0.0032 0.0175]

function, see, e.g., Coles (2001). Simulations and practical experience suggest these

intervals provide better results than those derived by using the numerical Hessian

matrix.
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The estimates of the tail index suggest that the left part of the distribution of

the MSCI-USA and MSCI-EU returns is quite heavy tailed, indicating substantial

downward potential of the financial markets. Furthermore, comparing estimates

of δi indicates that the marks of MSCI-EU exceedances over the initial threshold

have a larger influence on the conditional rate of marginal exceedances than MSCI-

USA exceedances have. The conditional rates of exceeding the initial threshold are

reported in Figure 5. Figures 6 plots the time varying dependence parameter θ(t)

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
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Figure 5: The estimated conditional rates of the marginal exceedances over the initial thresholds
in the self-exciting POT model with predictable marks for negated log-returns of MSCI-USA and
MSCI-EU indices.

(left panel) and the estimated conditional probabilities of joint exceedances over

the initial threshold compared with the (constant) empirical probability of joint

exceedances (right panel).

The model of joint exceedances provides a specific feedback mechanism describ-

ing how the mark of an exceedance affects the arrival of future events. Figure 7

illustrates the effect of different values of MSCI-USA negated returns at time n+ 1,

on the components of the model at time n+ 2, where n = 5749 – number of observa-

tions used for estimation of the bivariate model. Note that we denote MSCI-USA’s

(MSCI-Europe’s) negated return at time t by X1,t (X2,t). Realizations of X1,n+1

that are smaller than the threshold u1 = 2.49% do not influence any component of

the model. For X1,n+1 = u1, however, the rate of marginal exceedance τ1(n + 2, u1)
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Figure 6: The estimated time-varying dependence parameter (left-hand panel) and the conditional
probability of joint exceedances over the initial threshold (right-hand panel) in the two dimensional
model. An indicator of times of joint exceedances (right-bottom panel).
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Figure 7: Effects of different values of X1,n+1 on the rates of marginal and joint exceedances over
the initial threshold at time (n+ 2).
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jumps (see Panel 1 of Figure 7) and increases smoothly for X1,n+1 > u1, leading to

a corresponding increase, through the relation (19), in the rate of joint exceedance

τ(n+2, u1, u2) (Panel 2 of Figure 7). Assuming that there is no exceedance of X2,n+1

over u2 = 2.86%, the dependence parameter θ(n + 2) and the rate τ2(n + 2, u2) are

unaffected by the marginal exceedances of X1,n+1. It is, of course, not desirable that

the effect increases so strongly at a arbitrary threshold. However, this is the nature

of the POT model and one is usually interested in more sizable exceedances.

In case of a joint exceedance at time n+1, we observe an increase in all components

of the model, that is in τ1(n + 2, u1), τ2(n + 2, u2), and θ(n + 2), that results in an

increase of τ(n+ 2, u1, u2). Figure 8 illustrates the effect of different values of X1,n+1

and X2,n+1 at time n + 1, on the rate of joint exceedances at time n + 2. It is
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Figure 8: Effects of different values of X1,n+1 and X2,n+1 on the rate of joint exceedances over the
initial threshold at time (n+ 2).

important to be aware of the fact that the symmetrical dependence implied by our

model does not mean that the marks of exceedances, standardized by hi, have the

same effect on the conditional rate of joint exceedances. This effect depends on the

history of processes and, hence, it is time-varying. Figure 8 illustrates the asymmetry

of influence of marks of exceedances on the conditional rate of joint exceedances over
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the initial threshold.

Figure 9 shows the QQplot of the standardized inter-exceedances times against

the standard exponential distribution and the bar plot of real and standardized times

of joint exceedances. From the bar plots in Figures 9 (right panel), it is visible that

the clusters in the original series of joint exceedances have been captured reasonably

well indicating a good model fit. We have also added to the QQplot on the left-
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Figure 9: QQ-plot of the standardized inter-exceedances times vs standard exponential quantiles
(left-hand panel). Bar plot indicating the real and standardized times of exceedances (right-hand
panel). Two-dimensional model.

hand panel the analysis of 500 realizations of the exponential random variable (in

green color), in order to illustrate what type of deviations one can expect. The

standardized inter-exceedances times do not deviate very much from the standard

exponential distribution suggesting the theoretical consistency of the model.

We now use the estimated parameters of Tables 2-3 to simulate sample paths

as described in Section 3.3. Figure 10 plots simulated exceedances. The real ex-

ceedances of the data used for parameter estimation is shown in Figure 1.

Table 4 provides a comparison of the characteristics of simulated data, averaged of

1000 random samples of the same length as the data from the empirical application,

with the characteristics of this data. Note that margin 1 corresponds to the MSCI-

USA index and margin 2 to the MSCI-EU index. The results suggest that the

simulated data captures the characteristics of the real data quite well, indicating
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Figure 10: Simulated exceedances for the 1st margin (top panel) and the 2nd margin (middle panel).
An indicator of times of joint exceedances (bottom panel).

that both the model specification is appropriate and simulation algorithm works.

Table 4: Comparison of the simulated data to the data used for the estimation

Mean std Original sample

frequency of exceedances of margin 1 0.0265 0.0081 0.0230
frequency of exceedances of margin 2 0.0242 0.0093 0.0230

frequency of joint exceedances 0.0087 0.0031 0.0092
average mark of exceedances of margin 1 3.5516 0.3523 3.6622
average mark of exceedances of margin 2 3.9925 0.5648 4.0084

4.3.2. Four-dimensional Model

In this Section, we focus on joint extreme negative returns of equity of four

major European banks: Deutsche Bank (DB), HSBC Holdings (HSBC), Royal Bank

of Scotland (RBS), and UBS. As before, after estimating the four-dimensional model

of joint exceedances with the asymmetric Gumbel copula we conduct two likelihood

tests on the null hypotheses that the dependence parameter is constant and that the

dependence structure is symmetric. We reject the first hypotheses, but not the second

one with p-values of 0.0001 and 0.99, respectively. Parameter estimates along with

95% confidence intervals can be found in Tables 5-6. Comparing the estimates of δi

and ψi parameters, we note that although the initial threshold was set on the same
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Table 5: Parameter estimates of the self-exciting POT model with predictable marks: four-
dimensional model.

DB HSBC
Parameter Estimate Conf. Interval Estimate Conf. Interval

τi 0.0143 [0.0086 0.0186] 0.0107 [0.0036 0.0215]
ψi 0.0190 [0.0115 0.0323] 0.0199 [0.0066 0.0398]
γi 0.0528 [0.0316 0.0676] 0.0286 [0.0137 0.0571]
δi 1.2259 [0.2268 1.5578] 0.5173 [0.1832 1.0185]
ξi 0.1811 [0.0605 0.3621] 0.1354 [0.0479 0.2665]
βi 1.0710 [0.6996 1.4853] 1.0483 [0.4805 1.9001]
αi 0.1149 [0.0534 0.2088] 0.1398 [0.0495 0.2751]

RBS UBS
Parameter Estimate Conf. Interval Estimate Conf. Interval

τi 0.0088 [0.0031 0.0173] 0.0106 [0.0037 0.0195]
ψi 0.0194 [0.0081 0.0365] 0.0223 [0.0093 0.0438]
γi 0.0251 [0.0104 0.0447] 0.0371 [0.0186 0.0615]
δi 0.3002 [0.1063 0.5911] 0.4981 [0.1764 0.9807]
ξi 0.3277 [0.1161 0.6452] 0.1017 [0.0360 0.2003]
βi 0.7171 [0.2540 1.4118] 1.0675 [0.5337 1.9014]
αi 0.2693 [0.0954 0.5302] 0.1980 [0.0701 0.3898]

Table 6: Parameter estimates of the model of joint exceedances: four-dimensional model.

Parameter Estimate Conf. Interval

θm 1.4364 [1.2726 1.5164]
ψm 0.0254 [0.0126 0.0508]
γm 0.0119 [0.0065 0.0237]
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level (96.22% quantile) for all indexes, the marks of exceedances have sufficiently

different influence on the conditional rates of joint exceedances, with DB stocks

being the most influencing factor. On the other hand, the estimates of γi show that

the influence of DB exceedances on the marginal (joint) rates decay faster in time

compared to other banks. This interplay between the impact and decay functions

determines another mechanism of asymmetric responses of marginal events on the

rate of joint exceedances. The conditional rates of exceeding the initial threshold are

reported in Figure 11.
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Figure 11: The estimated conditional rates of the marginal exceedances over the initial threshold
in the self-exciting POT model with predictable marks for negated log-returns of DB, HSBC, RBS,
and UBS stocks.

The time varying dependence parameter θ(t) and the estimated conditional prob-

abilities of joint exceedances are depicted in Figure 12. Note that the dependence

parameter in the two-dimensional model is more volatile than the one in the four-

dimensional case, which can be explained by the estimates of ψm and γm. In the

two-dimensional model the contribution of a joint exceedance to the dependence pa-

rameter is larger in magnitude (due to larger ψm) and decays slower in time (due

33



to the smaller γm) than in the four-dimensional case suggesting that shocks in the

banking sector are less lasting and less severe than their overall influence on the

European and US financial markets.
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Figure 12: The estimated time-varying dependence parameter (left-hand panel) and the conditional
probability of joint exceedances (right-hand panel) in the four-dimensional model. An indicator of
times of joint exceedances (right-bottom panel).

The results for the goodness-of-fit can be found in Figure 13. Again, the fit looks

satisfactory and the clusters of joint exceedances have been captured reasonably well.

As before, in order to illustrate reasonable deviations from a theoretical case, we have

added the analysis of 500 realizations of the exponential random variable (in green

color) to the QQplot on the left-hand panel of Figure 13. Although the standard-

ized inter-exceedances times do not deviate too much from a standard exponential

distribution, the fit is not perfect, which may partly be caused the bias due to the

estimation of 31 parameters. Another factor influencing the fit of the multivariate

model of joint exceedances is the fit of the marginal models, namely, the self-exciting

POT with predictable marks. Figure 14 illustrates the QQplot of the marginal

standardized inter-exceedances times against the standard exponential distribution.

Figure 15 provides the QQplot of marks of the marginal exceedances transformed,

by the GPD with the appropriate shape ξi and scale parameter βi + αiv
∗
i (t), to a

standard exponential distribution. The fairly good fit of the marginal models illus-

trates a structural assumption of POT-models, i.e., conditioning over the threshold
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Figure 13: QQ-plot of the standardized inter-exceedances times vs standard exponential quantiles
(left-hand panel). Bar plot indicating the real and standardized times of exceedances (right-hand
panel). Four-dimensional model.
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Figure 14: QQ-plot of the marginal standardized inter-exceedances times vs standard exponential
quantiles.
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Figure 15: QQ-plot of the transformed marks vs standard exponential quantiles.
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that is higher than the initial one, the GPD with the same shape parameter is still

appropriate for the tail modeling.

The fit of the model of joint exceedances in the two and four-dimensional cases

suggest that the model provides an efficient way to quantify the effects that cause

the clustering of extreme financial returns. Among others, these effects are the

reaction of markets to common economic factors and interplay between markets

through time-varying linkages. Note that being able to quantify the effects our

model cannot explain the source of clustering and contagion, because our model is

decidedly reduced-form. To show when and where exactly the shock occurs, a pure

qualitative analysis is required.

5. Conclusion

In the present paper, we develop a multivariate approach to model joint ex-

ceedances over high thresholds by using an extreme value distribution and a self-

exciting processes as a way to capture the temporal dependence in extreme events.

In our model both marginal exceedances of certain dimensions, as well as joint ex-

ceedances may affect the probability of joint extremes to a different extent. The

model captures the feedback from marginal extreme events as well as changes in the

dependence intensity between extreme events.

We apply the model to equity data, studying the patterns of self-exciting fea-

ture in the financial markets (USA, Europe) and in the European banking sector

(Deutsche Bank, RBS, HSBC, and UBS). Goodness-of-fit results demonstrate a rea-

sonable fit of the model and suggest the empirical importance of the self-exciting

feature for modeling marginal extreme events and for capturing changes in the inter-

dependencies between extreme events. We find that the full flexibility of our model

is not required to describe that data, as the responses to shocks and the dependence

between the exceedances are symmetric at a fixed point of time, but they are varying

in time through the self-exciting component.

The model proposed in this paper can be applied in various fields, where the anal-

ysis of rare events is required. In portfolio models, for instance, where combining
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several risky securities it is of great importance to estimate not only the marginal de-

fault probabilities, but also (even much more importantly) the joint default probabil-

ities. The model can also be applied as a stress testing tool. Both through simulation

and through evaluating different stress scenarios our model yields an approach how

banks or insurance companies may prepare their portfolios against extreme events.

In general, the model can potentially be applied well beyond the financial context.

References

Ait-Sahalia, Y., J. Cacho-Diaz, and R. J. Laeven (2011): “Modeling Finan-

cial Contagion Using Mutually Exciting Jump Processes,” NBER Working Paper

No. w15850.

Bowsher, C. G. (2007): “Modelling security market events in continuous time:

Intensity based, multivariate point process models,” Journal of Econometrics, 141,

876–912.

Chavez-Demoulin, V. (2005): “Estimating Value-at-Risk: A point process ap-

proach,” Quantitative Finance, 5(2), 227–234.

Chavez-Demoulin, V., and P. Embrechts (2011): “An EVT primer for credit

risk,” The Oxford Handbook of Credit Derivatives, 73(1), 500–532.

Coles, S. G. (2001): An Introduction to Statistical Modeling of Extreme Values.

Springer.

Coles, S. G., and J. A. Tawn (1991): “Modelling extreme multivariate events,”

Journal of Royal Statistical Society B, 53(2), 377–392.

de Haan, L., and A. Ferreira (2006): Extreme Value Theory: An Introduction.

New York: Springer.

Demarta, S., and A. J. McNeil (2005): “The t copula and related copulas,”

International Statistical Review, 73(1), 111–129.

38



Embrechts, P., C. Klueppelberg, and T. Mikosch (1997): Modelling Ex-

tremal Events for Insurance and Finance. Springer.

Embrechts, P., T. Liniger, and L. Lin (2011): “Multivariate Hawkes Processes:

an Application to Financial Data,” Journal of Applied Probability, 48(A), 367–378.

Errais, E., K. Giesecke, and L. R. Goldberg (2010): “Affine Point Processes

and Portfolio Credit Risk,” SIAM Journal of Financial Mathematics, 1, 642–665.

Hawkes, A. G. (1971): “Point Spectra of Some Mutually Exciting Point Processes,”

Journal of the Royal Statistical Society B, 33(3), 438–443.

Leadbetter, M. R. (1991): “On a basis for ”Peaks over Threshold” modeling,”

Statistics and Probability Letters, 12, 357–362.

McNeil, A. J., R. Frey, and P. Embrechts (2005): Quantitative Risk Man-

agement: Concepts, Techniques, Tools. Princeton University Press.

Resnick, S. I. (2007): Extreme Values, Regular Variation, and Point Processes.

Springer.

Resnick, S. I., and C. Starica (1995): “Consistency of Hill’s estimator for de-

pendent data,” Journal of Applied Probability, 32.

Rootzen, H., and N. Tajvidi (2006): “Multivariate generalized Pareto distribu-

tions,” Bernoulli, 12, 917–930.

Smith, R. L., J. A. Tawn, and S. G. Coles (1997): “Markov chain models for

threshold exceedances,” Biometrika, 84(2), 249–268.

Tawn, J. A. (1990): “Modelling multivariate extreme value distributions,”

Biometrika, 77,2, 245–253.

39


